FACULTADES DE CIENCIAS Universidad de NavarraOpenCourseWare
 DEPARTAMENTO DE GENéTICA
  Asignatura: Human Molecular Genetics
 

1.5 El genoma mitocondrial

 La mitocondria es un orgánulo de probable origen endosimbióntico que se ha adaptado a su nicho intracelular: para aumentar su tasa de replicación y asegurar la transmisión a las células hijas después de cada división mitótica, el genoma de las mitocondrias de mamíferos se ha ido reduciendo de tamaño hasta alcanzar las 16.569 kb en el caso del genoma mitocondrial humano. Las mitocondrias son las verdaderas centrales térmicas de nuestro organismo ya que en ellas tiene lugar la fosforilación oxidativa (OXPHOS), es decir, la respiración celular acoplada a la producción de energía en forma de ATP. El funcionamiento del sistema OXPHOS tiene, además, importancia médica por la generación de especies reactivas de O2 (Reactive Oxygen Species, ROS) y por la regulación de la muerte celular programada o apoptosis. Las proteínas incluidas en el OXPHOS se localizan dentro de la membrana mitocondrial interna, e incluyen: (1) Componentes de la cadena transportadora de electrones (Cadena respiratoria mitocondrial, CRM); (2) ATPasa de membrana; (3) Translocador de nucleótidos de Adenina (ANT).

El ADNmt humano es una molécula circular de 16.569 pares de bases. El número de moléculas de ADNmt por célula varía entre unos pocos cientos en los espermatozoides a unas 200.000 copias en el oocito, pero en la mayor parte de los tejidos el rango está comprendido entre unas 1.000 y 10.000 copias por célula, con 2 - 10 moléculas de ADN por mitocondria. Este genoma contiene información para 37 genes:

  • Genes que codifican las 2 subunidades 12S y 16S del ARNr (ARN ribosomal) de la matriz mitocondrial.
  • Los genes para los 22 ARNt (ARN transferente), requeridos para la síntesis de proteínas mitocondriales en la misma matriz mitocondrial.
  • Genes que codifican 13 polipéptidos que forman parte de los complejos multienzimáticos del sistema OXPHOS. En concreto, en el genoma mitocondrial se codifican 7 subunidades del Complejo I, 1 subunidad del Complejo III, 3 subunidades del Complejo IV, y 2 subunidades de la ATPasa (Complejo V).

Es importante no perder de vista que el resto de las subunidades polipeptídicas de estos complejos, así como el Complejo II completo, están codificados en el genoma nuclear, de manera que no todas las enfermedades mitocondriales están necesariamente causadas por alteraciones en el ADN mitocondrial.

Figura 1.12: se muestra esquemáticamente la membrana mitocondrial interna, incluyendo los complejos proteicos del sistema OXPHOS con algunos de sus componentes. En cada complejo, se muestran en color naranja las subunidades que están codificadas por genes mitocondriales (las restantes subunidades están codificadas por genes nucleares).

La característica estructural más sorprendente del ADNmt es que los genes se encuentran situados uno a continuación del otro, sin apenas intrones ni regiones no codificantes entre los genes. Al contrario que el genoma nuclear, en el que las regiones no codificantes son mayoritarias, el ADN mitocondrial sólo posee un 3% de secuencias no codificantes. Veintiocho de los genes mitocondriales (2 ARNr, 14 ARNt y 12 polipéptidos) se encuentran en una de las cadenas (cadena H ó pesada), mientras que los 9 genes restantes (1 polipéptido y 8 ARNt) están en la cadena complementaria (cadena L ó ligera). La única zona del ADNmt que no codifica ningún gen es la región del bucle de desplazamiento (bucle-D), localizada alrededor del origen de replicación de la cadena H. Esta región contiene también los promotores de la transcripción y los elementos reguladores de la expresión génica. Otra de las peculiaridades de la organización genética del ADNmt es que los genes de los ARNt se distribuyen entre los genes de los ARNr y los codificantes de proteínas; esta disposición tiene consecuencias muy importantes para el procesamiento del ARN. Para la replicación del ADNmt hacen falta dos orígenes diferentes, uno para cada cadena (OH y OL). Ambos orígenes de replicación están muy separados, haciendo que el proceso sea unidireccional y asimétrico. La síntesis del ADN se inicia en OH y es realizada por una polimerasa específica de la mitocondria, la DNApol ?, que alarga un ARN iniciador fruto del procesamiento de un transcrito primario que se sintetiza a partir del promotor L. La replicación continúa de modo unidireccional hasta alcanzar OL, momento en el cual comienza la síntesis de la segunda cadena del ADN, alargando también un pequeño iniciador de ARN.

 

Figura 1.13: este video se ilustra de modo esquemático la estructura del genoma mitocondrial. Se muestran ambas cadenas con sus orígenes de replicación, todos los genes que codifican los ARNt, los ARNr y las proteinas mitocondriales, con la posición de los promotores. También se muestran algunas deleciones que son causa de enfermedades.

 

En la transcripción del ADNmt intervienen una polimerasa de ARN, al menos un factor de transcripción implicado en la iniciación (mtTFA), y uno de terminación (mTERF). Las dos cadenas del ADNmt se transcriben completamente a partir de tres puntos de iniciación diferentes, dos para la cadena pesada (H1 y H2) y uno para la cadena ligera (L), originando tres moléculas policistrónicas que se procesan posteriormente por cortes endonucleolíticos precisos en los extremos 5´ y 3´ de las secuencias de los ARNt, para dar lugar a los ARNr, ARNt y ARNm maduros. De esta forma los ARNt, situados entre los genes de los ARNr y ARNm, actúan como señales de reconocimiento para los enzimas de procesamiento. En particular, la cadena H se transcribe mediante dos unidades de transcripción solapadas en la región de los ARNr: la primera de estas unidades comienza delante del gen para el ARNtPhe (lugar de iniciación H1), termina en el extremo 3´ del gen para el ARNr 16S y es responsable de la síntesis de los ARNr 12S y 16S, del ARNtPhe y del ARNtVal. El factor de terminación (mTERF) se une a una secuencia situada en el gen del ARNtLeu y provoca la terminación de esta unidad. La segunda unidad de transcripción comienza cerca del extremo 5´ del gen del ARNr 12S (lugar de iniciación H2) y transcribe la casi totalidad de la cadena pesada; el procesamiento de este ARN policistrónico origina los ARNm de 12 péptidos y los otros 12 ARNt codificados en esta cadena. La transcripción de la cadena ligera comienza cerca del extremo 5´ del ARN 7S (en el bucle-D) y da lugar al iniciador de la replicación de la cadena pesada, 8 ARNt y 1 péptido (ND6).

La síntesis de las proteínas mitocondriales tiene lugar en ribosomas específicos de la mitocondria, cuyos componentes están codificados en el ADNmt (ARNr 12S y 16S) y en el genoma nuclear (84 proteínas ribosomales). En este sistema de traducción se sintetizan las trece proteínas codificadas en el ADNmt utilizando un código genético que difiere ligeramente del código genético universal. Así, UGA codifica el aminoácido triptófano (Trp) en vez de ser un codón de terminación, y los codones AUA y AUU se utilizan también como codones de iniciación.

La biogénesis de la mitocondria depende de la expresión coordinada de los genomas mitocondrial y nuclear, pero hasta ahora se conoce muy poco acerca de los mecanismos que regulan la interacción de ambos sistemas genéticos. La expresión del ADNmt parece estar regulada por el factor de iniciación de la transcripción mtTFA, codificado en el genoma nuclear. Este factor podría ser el responsable tanto de los niveles de ARN como del número de copias de ADNmt, ya que la replicación depende de la síntesis de un iniciador de ARN a partir del promotor de la cadena ligera. La regulación de la relación entre los ARNr y los ARNm mitocondriales se realiza fundamentalmente mediante la selección del lugar de iniciación de la transcripción de la cadena pesada, que a su vez está relacionada con el factor mtTERF (que causa terminación de la transcripción después de la síntesis de los ARNr) y con el procesamiento de los ARN primarios. Asimismo, la actividad transcripcional puede estar regulada por estímulos hormonales, especialmente por hormonas tiroideas que actúan tanto de un modo indirecto (por activación de genes nucleares) como directamente sobre el propio ADNmt.

 

 
© Universidad de Navarra | contacto fnovo@unav.es | 2011-2012 Creative Commons License Esta obra está bajo una licencia de Creative Commons.