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Beginning in 1870 Charles Sanders Peirce published a series of papers on a “logic of
relations,” which corresponded to a linear associative algebra. This algebra is related
by a linear transformation to quaternions and thus to the C(3, 0) algebra of William
Kingdon Clifford. This Clifford algebra contains the Pauli matrices and so constitutes
an operator basis for the nonrelativistic quantum theory of spin one-half particles. A
further unification is achieved by taking the wave functions themselves to be 2× 2
matrices which are Peirce logical operators and also elements of the Clifford algebra.
Thus we have discovered a direct path from the Peirce logic to quantum theory. A dia-
grammatic method follows from the Peirce/Clifford algebraic approach and is suitable
for describing particle interactions.
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1. INTRODUCTION

Charles Sanders Peirce (1839–1914) was one of the top American physicists
of the nineteenth century (see, e.g., Cattell and Brimhall (1906); Eisele (1979);
Fisch (1981); Ketner (1998); Lenzen (1975)). He was internationally well known
for his work on the measurement of gravitational acceleration, the use of the
wavelength of light as a measurement standard (commended by Michelson and
Morley (Lenzen, 1975)), stellar photometry, and the mapping of the distribution
of stars in the local galaxy. He was employed as a physicist by the U.S. Coast and
Geodetic Survey from 1867 to 1891 and was a member of the National Academy
of Sciences from 1877. He was personally acquainted with many of the greatest
European physicists of the age, including Maxwell, whom he visited at Cambridge
in April of 1875 (see Fisch, 1986, p. 125).

Peirce was also a mathematician and logician of highest standing (Fisch,
1986). He exchanged ideas with such luminaries as De Morgan, Jevons, Cayley,
Sylvester, and Clifford. He held a lecturership in logic at Johns Hopkins from 1879
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to 1884. One of his students was Allan Marquand, designer of an early mechan-
ical logic machine. Peirce himself designed an electrical computing machine at
Marquand’s request (Ketner, 1984). He also worked out and published a positive
version of what later became known as Alan Turing’s limits of computability thesis
(Ketner, 1988). Peirce’s father, Benjamin Peirce Jr., was a long-time professor of
mathematics and astronomy at Harvard, and a world authority in the area of linear
algebra (Lenzen, 1968). The younger Peirce also made significant contributions
to the theory of associative algebras (Peirce, 1933).

Peirce’s relationship with William Kingdon Clifford (1845–1879) is particu-
larly noteworthy. They became acquainted when both took part in the December
1870 expedition to Sicily to observe the solar eclipse. On May 4, 1875, Peirce
wrote his mother from London (Fisch, 1986, p. 126),

Today I went to the Royal Society rooms. . .and I received an invitation to attend the
meetings. . . I afterward went to see Clifford and had a very interesting talk with him
about Logic, etc. & I am going to dine there Sunday.

Clifford complimented Peirce’s physical and mathematical work in several places.
Especially telling is a remark by E. L. Youmans, publisher of thePopular Science
Monthly, in a letter home from London, October 29, 1877 (see Peirce, 1933, p. xxii;
Fisch, 1986, p. 126):

Clifford . . . says he is the greatest living logician, and the second man since Aristotle
who has added to the subject something material, the other being George Boole. . .

As if such accomplishments were not sufficient, Peirce is widely recognized as the
most influential American philosopher of both the nineteenth and twentieth cen-
turies (Ketner, 1998, p. 40). He was the founder of the school known as Pragmatism
(which he later renamed Pragmaticism). He was the main precursor of John Dewey
and William James, as both acknowledged (Dewey, 1938, P. 9, and James, 1938,
the dedication).

While Peirce’s standing in the areas of logic and philosophy is now well
established, his recognition as a mathematician and physicist remains obscure at
best. Only a few have realized that Peirce’s ideas in physics were profoundly
innovative and not only anticipated some of the major themes of twentieth-century
physics, but might be significant in developing new physics in the twenty-first
century. (Christiansen, 1993; Fernandez, 1993; Finkelstein, 1988, 1994, 1996;
Lenzen, 1973, 1975).

In this paper we propose a new application of Peirce’s thought, based not only
on his physical ideas, but also on his developments in linear algebra and logic. This
is in the spirit of his overarching philosophy that knowledge is a unified whole and
that themes from one discipline are applicable to others.

We will begin with a well-known mathematical background from Peirce’s
friend Clifford, bring in Peirce’s logic-based algebra, and see how this leads quite
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naturally to a simple version of nonrelativistic quantum mechanics. Peirce’s themes
are then carried further by applying a diagrammatic method which produces a new
way of looking at quantum interactions. There are many potential implications of
these innovations.

2. THE CLIFFORD MATRICES

For reference, we list the standard representation of the C(3, 0) (see, G¨ockeler
and Sch¨ucker, 1987, for the classification) Clifford algebra in 2×2 complex matrix
form. This compares, for example, with that given by Snygg (1997). The identity,
or unit scalar, is,

I =
(

1 0
0 1

)
(1a)

The vectors are

γ 1 =
(

0 1
1 0

)
γ 2 =

(
0 −i
i 0

)
γ 3 =

(
1 0
0 −1

)
(1b)

These are a common expression of the Pauli matrices. The multiplication rule in
this algebra isγ i γ j + γ j γ i = 2δi j .

The bivectors are

γ 1γ 2 =
(

i 0
0 −i

)
= i γ 3 = −k

γ 2γ 3 =
(

0 i
i 0

)
= i γ 1 = −i (1c)

γ 3γ 1 =
(

0 1
−1 0

)
= i γ 2 = −j

The i, j, andk are quaternion bases which satisfyij = -ji = k, jk = −kj = i, ki =
−ik = j, ii = jj = kk = −1.

The trivector or pseudoscalar is

γ 1γ 2γ 3 =
(

i 0
0 i

)
= i j (1d)

The use of these matrices in the quantum theory of spin one-half particles is
very familiar.

3. FROM LOGIC TO ALGEBRA

The development of Peirce’s logic of relations and its affiliated linear algebra
can be traced through a series of papers (Peirce, 1933, paragraphs 45, 154, 252,
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and 328). All of these papers are to be found in Volume III of the collected works
(Peirce, 1933). Modern studies of Peirce’s linear algebra include those of Lenzen
(1975), Brunning (1981), and Iliff (1997).

The logic of relatives might better be called the logic of how things are related
to one another. This is best explained by using an example given by Peirce (1933,
paragraph 124) himself.

Start with two mutually exclusive classes of individuals, say the teachers,
u1, in a school, and the pupils,u2, in the same school. In general, there could be
more than two classes, with individuals labeledui . These individuals are called
“absolute terms” by Peirce, which we will shorten to “absolutes.” Absolutes are
one type of element in the logic.

A second type of element in the logic has to do with the linear transformation
of absolutes. These second elements are called “relatives” or “dual relatives” by
Peirce. We choose to call them “relative operators” or just “operators.” (A method in
this nomenclature will become apparent when we get to quantum mechanics.) For
example, an operatoru12 (written (u1 : u2) in Peirce’s notation) is called a teacher–
pupil operator. In similar fashion one has a colleague (teacher–teacher) operator,
u11, a pupil–teacher operator,u21, and a schoolmate (pupil–pupil) operator,u22.
These four operators are assumed to act on the two absolutes in the following way:

u11u1 = u1, u11u2 = 0, u12u1 = 0, u12u2 = u1

u21u1 = u2, u21u2 = 0, u22u1 = 0, u22u2 = u2 (2)

A verbal statement ofu12u2= u1 would be “a teacher–pupil operator acting
on a pupil produces a teacher.” The relationu21u2= 0 would be “a pupil–teacher
operator acting on a pupil produces nothing.” Of course, the verbal model has a
limited correspondence to reality. The mathematical properties given in (2) (see
also (3) and (11)) should be consulted for the precise action of the operators.

The general rule for the action of these operators on absolutes is

ui j uk = δ jkui (3)

This also applies to cases with more than two classes of individuals.
The operators can also act on each other according to a multiplication rule

similar to (3):

ui j ukl = δ jkuil (4)

For the case of only two classes this multiplication table is given in Table I.
The operator in the left column acts from the left on the operator in the top row
and produces the result in the corresponding box. The operations are associative
and thus representable as matrices.

Table I determines a certain linear associative algebra. In Benjamin Peirce’s
landmark classification of algebras (B. Peirce, 1881) this is labeled g4 and called
a form of quaternion.
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Table I. Multiplication Table for Relative Operators

u11 u12 u21 u22

u11 u11 u12 0 0
u12 0 0 u11 u12

u21 u21 u22 0 0
u22 0 0 u21 u22

The standard multiplication table for the quaternion bases is given in Table II.
A convenient 2× 2 matrix representation was given in (1c). There is also a very
simple matrix representation for theui j ’s. This appeared in a work of Lenzen
(Lenzen, 1975).

u11 =
(

1 0
0 0

)
, u12 =

(
0 1
0 0

)
, u21 =

(
0 0
1 0

)
, u22 =

(
0 0
0 1

)
(5)

It is easily verified that these matrices satisfy (4). The four are obviously a
basis for 2× 2 matrices. In particular, the Clifford matrices and the quaternion
basis can be constructed as linear combinations of theui j ’s, when the coefficients
are allowed to be complex. The quaternion basis transformation is

I = u11+ u22, i=−iu12− iu21, j= u21− u12, k=−iu11+ iu22 (6)

Actually this is a special case of a more general transformation given by Peirce
(1976, paragraph 130). It defines the most general set of matrices which satisfy
the quaternion multiplication rule.

The inverse transformation of (6) expresses theui j ’s in terms of either quater-
nions or Clifford matrices:

u11 = 1

2
(I + ik) = 1

2
(I + γ 3)

u12 = 1

2
(ij − j) = 1

2
(γ 1+ i γ 2)

(7)

u21 = 1

2
(ii + j) = 1

2
(γ 1− i γ 2)

u22 = 1

2
(I − ik) = 1

2
(I − γ 3)

Table II. Multiplication Table for Quaternion Bases

I i j k

I I i j k
i i −I k −j
j j −k −I i
k k j −i −I
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So theui j operators are not quaternion bases, but are numbers in the quaternion
system which are simple linear combinations of those bases. They are also simple
linear functions of Clifford vectors and are themselves also Clifford numbers.

Having gained a picture of the operators and their place in the world we now
turn back to the absolutes,ui .

We would like to be able to place the absolutes into the above algebraic
scheme. This would involve expressing absolutes in terms of the relative operators
and vice-versa. Actually, Peirce solved half of this problem by giving an expression
for absolutes as a sum of operators,

ui =
∑

j

ui j (8)

This equation appears in the formA = A : A+ A : B+ · · · (paragraphs 220,
222, and Peirce, 193:311). For the case of two classes of individuals and the matrix
representation (5), this becomes,

u1 = u11+ u12 =
(

1 1
0 0

)
(9a)

u2 = u21+ u22 =
(

0 0
1 1

)
(9b)

A sample logic of relations verbal statement of the first of these would be, “a
teacher is the sum of a colleague (teacher–teacher operator) and a teacher (teacher–
pupil operator).”

Although Peirce indicates by the notation{ui : u j } that relative operators are
logically related to their constituent absolutes, he specifically states (Peirce, 1933,
paragraph 144) that an operator cannotalgebraicallybe reduced to a combination
of absolutes. Strictly speaking, this is true. But about this time Charles Hermite
discovered an easy prescription to form a suitable combination of absolutes which
does produce the relative operators.

Such a prescription can be constructed using the Hermitian conjugate matrices

u∗1 =
(

1 0
1 0

)
u∗2 =

(
0 1
0 1

)
(10)

The Hermitian conjugate is a transpose of the matrix as well as a complex conjugate
of the elements. Peirce, probably unaware of Hermite’s work, actually defines the
transpose (he calls it the “converse”) but does not apply it to this problem.

The expressions for operators in terms of absolutes are then

u11 = 1

2
u1u∗1 u12 = 1

2
u1u∗2

u21 = 1

2
u1u∗1 u22 = 1

2
u1u∗2 (11)
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These satisfy Peirce’s rules for the action of operators on absolutes. So a complete
algebraic analog of Peirce’s logic of relatives has been established. The logic of
relatives and the linear associative algebra are simply related by a linear transfor-
mation. The reader will perhaps already have noted also the appearance of some
concepts suggestive of quantum mechanics.

4. QUANTUM CORRESPONDENCE

We consider a quantum system describing a single free nonrelativistic par-
ticle with two internal states. Ordinarily the wave functions for this system are
two-component spinors and the operators are linear combinations of the 2× 2
Pauli matrices. The operators are thus numbers in the C(3, 0) Clifford algebra and
also must be linear transformations of the Peirce relative operators.

There is an alternate way to represent wave functions, themselves, as 2× 2
matrices instead of column or row matrices. This has the advantage that all quan-
tities are Clifford elements and can be expressed in terms of theγ ’s independently
of any specific matrix representation. This type of approach actually has a long
and respectable history, especially with the relativistic Dirac theory, associated
with names like Eddington (1928), Proca (1930), and Sommerfeld (1939). See the
discussion by Snygg (1997, p. 170) for details and further references.

We adopt this approach of wave functions as square matrices. The results can
all be expressed generally in terms ofγ ’s although we will often use the specific
matrix representation of the previous two sections for the sake of transparency.

A matrix representation of the momentum operator, which will appear as part
of a wave function, is

p = pi γ
i =

(
p3 p1− i p2

p1+ i p2 −p3

)
(12)

where thepi are the 3-space vector components. These are not spinors, but will
be related presently to a representation of spinors by matrices.

The product

pp = pi pj γ
i γ j = (p2

1 + p2
2 + p2

3

)
I = p2I (13)

is obtained using the Clifford multiplication rule (or by squaring the matrix (12)).
The derivative operator or gradient in Cartesian coordinates is

∇ = ∂

∂xi
γ i (14)

with Laplacian

∇2 = ∂

∂xi

∂

∂x j
γ i γ j =

(
∂2

(∂x1)2
+ ∂2

(∂x2)2
+ ∂2

(∂x3)2

)
I (15)
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The Schroedinger equation is

− h2

2m
∇2ψ = Eψ (16)

Now the usual assumption of a plane wave solution is made,

ψ = u exp
(
i pi x

i
/

h
)

(17)

but withu a Clifford number which will be represented as a 2× 2 matrix. One has

∇ψ = i

h
pψ (18)

∇2ψ = − p2

h2ψ (19)

which gives, using (16) and (17),

p2u = 2mEu (20)

The Clifford algebra can also be consistent with standard Heisenberg commu-
tators. The algebra elements (such as the Pauli matrices) also satisfy commutation
relations. One also needs to recall that the operators should be considered as acting
on some Clifford matrix8. The position operator is

x = xi γ
i =

(
x3 x1− i x2

x1+ i x2 −x3

)
(21)

An example of a commutator is[
x1γ

1, p1γ
1
]
8 = (x1γ

1
)(

p1γ
1
)
8− (p1γ

1
)(

x1γ
1
)
8

= (x1γ
1
)(h

i

∂

∂x1
γ 1

)
8−

(
h

i

∂

∂x1
γ 1

)(
x1γ

1
)
8

= (x1γ
1
)(h

i

∂

∂x1
γ 1

)
8− h

i
γ 1γ 18

(
x1γ

1
)(h

i

∂

∂x1
γ 1

)
8

= i h8 (22)

where the Leibniz rule (Snygg, 1997, p. 86) for the derivative of a product of
Clifford numbers has been used.

Note that the Pauli matrices are representations of generators of SU(2) and
thus, in addition to the Clifford algebra rule, also satisfy the commutation relations

γ i γ j − γ j γ i = 2i εi jkγ k (23)

This is compatible with the Clifford multiplication rule. For example, one can
write

γ i γ j = i εi jkγ k (24)



P1: ILT/GJY P2: ILT

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472801 November 3, 2003 16:33 Style file version May 30th, 2002

Peirce, Clifford, and Quantum Theory 1965

for i 6= j . This is just (1c).
As an example of this, consider the commutator[

x3γ
3, p1γ

1
]
8 = (x3γ

3
)(

p1γ
1
)
8− (p1γ

1
)(

x3γ
3
)
8

= i γ 2(x3 p1+ p1x3)8

= hγ 2

(
x3

∂

∂x1
+ ∂

∂x1
x3

)
8

= 2hγ 2x3
∂

∂x1
8 (25)

Generally, [
xi γ

i , pj γ
j
]
8 = i hδi j8+ 2hεi jkγ kxi

∂

∂x j
8 (26)

where there is no sum over indices. This is the usual commutation relation plus an
additional term. It seems to be a natural generalization of the Heisenberg commu-
tators.

We now seek a suitable form for the matrix factoru of the wave function. It
is natural to assume thatu is an eigenfunction of the momentum operatorp such
that,

pu = pu (27)

A simple choice foru which satisfies (27) is

u+ = pI + p
(

p+ p3 p1− i p2

p1+ i p2 p− p3

)
(28)

That is,

pu+ = pp+ p2I = p(pI + p) = pu+ (29)

using (13).
We notice now that forp1 = p2 = 0, thenp3 = p (motion is along the 3-axis)

and

u+ = 2p

(
1 0
0 0

)
= 2pu11 (30)

Sou+ is directly related to the Peirce relative operatoru11.
A second solution of interest is

u− = pI − p (31)

which satisfies,

pu− = −pu− (32)
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and for p1 = p2 = 0,

u− = 2p

(
0 0
0 1

)
= 2pu22 (33)

Other general results are

u+u+ = 2pu+ u−u− = 2pu− (34a)

u+γ i u+ = 2pi u+ u−γ i u− = 2pi u− (34b)

showing that theu’s are their own eigenmatrices and also can be idempotent with
suitable normalization. In addition,

u+u− = 0 (35)

The two states are orthogonal. The twou’s are also Hermitian matrices, sou∗u =
uu and each (34) is actually a matrix of expectation values.

We note that, using the projectorsu11 = (1/2)(I + γ 3) andu22 = (1/2)(I −
γ 3) from (7) or (5) acting on the right, one obtains two solutions which are just ma-
trices with one nonzero column. These are left ideals of the algebra and correspond
to spinor solutions.

An helicity operator can be defined,

h = p
p

(36)

so that

hu+ = u+ hu− = −u− (37)

These are obviously spinup and spindown states.
A Hamiltonian operator is one which givesHu = Eu for eitheru+ or u−.

There are many possible forms forH. We choose

H = 1

8m

(
u+u∗+ + u−u∗−

)
(38)

The u’s are Hermitian, but the operator is written explicitly withuu∗ since this
suggests the ket-bra notation|〉〈|.

It is easy to verify, for example, that

Hu+ = p

4m
u+u+ = p2

2m
u+ = Eu+ (39)

using (34a).
We have established how the quantum eigenstatesu+ andu− are related to

the Peirce relative operatorsu11 andu22. A quantum correspondence can also be
established for the operatorsu12 andu21 and the Peirce absolutesu1 andu2.

To accomplish this, we make use of the matrixγ 1 (see (1b)) and note that if
w is a Clifford number andu a Schroedinger solution thenuw is also a solution.
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In particular,u+γ 1 andu−γ 1 are solutions and correspond (for momentum along
the 3-axis) since

u+γ 1 = 2p

(
0 1
0 0

)
= 2pu12 (40a)

to a spinup state and since

u−γ 1 = 2p

(
0 0
1 0

)
= 2pu21 (40b)

to a spindown state.
Further, one can construct general solutions:

U+ = u+ + u+γ 1 (41)

This has the correspondence

U+ = 2p

(
1 1
0 0

)
= 2pu1 (42)

for p1 = p2 = 0, giving a direct quantum interpretation of the Peirce absolute.
Equations (41) and (42) correspond to (9a). A similar comparison holds for spin-
down states (9b). The Peirce absolutes,u1 andu2, represent matrix compilations
of spinup and spindown states, respectively.

It is not difficult to compute (using (34)) general results such as

U+U+ = 2(p+ p1)U+ (43)

Also, since
U∗+ = u+ + γ 1u+ (44)

theU states are not Hermitian, but the general result

U+U+ = 4(p+ p1)u+ (45)

parallels the first equation in (11). Analogs of the rest of (11) can also be obtained.
The point is, one can start with two mutually exclusive absolutes, spinupu1

and spindownu2 in this case. From these states the relative operators (11) can be
formed which are themselves factors of wave function solutions. The canonical
wave function factorsu+ andu− then appear as elements of the Peirce/Clifford
algebra. A well-known quantum theory can thus be produced with only two Peirce
absolutes as a basis. It should be remarked that the quantum superposition principle
applies since any linear combination of solutions is, in general, a mixed state which
is also a solution.

In addition to the free-particle theory just developed, interacting systems can
also be described. A general operator can be formed from single particle states:

A = a11u11+ a12u12+ a21u21+ a22u22 (46)

where the ai j ’s are complex coefficients.
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A transition from an initial stateψi to a final stateψ f is just

ψ f = Aψi (47)

that is, a multiplication of Clifford numbers.
So the interaction of one particle with another could be given by (47) with

A a linear combination of states like (46) which could be formed of operators
associated with a second particle. So quantum interactions, at least schematically,
can be adapted to the Peirce formalism. A diagrammatic approach is outlined in
the next section.

There is a relationship here, which needs to be explored further, between the
present theory and a newly proposed theory of Clifford statistics (Baugh et al.,
2001; Finkelstein and Galiautdinov, 2001). In the case of “Cliffordons” symme-
tries of multiparticle states arise from the permutation group. A swap of two
Clifford states is produced by a sum or difference of two fundamental operators.
For example, a special case of (46):

S= u12+ u21 (48)

with

SU+ = U− SU− = U+ (49)

SoSgenerates transitions between spinup and spindown states.

5. DIAGRAMS

Peirce invented several systems of graphs or diagrams to model his various
logical constructs. We will not attempt to enumerate them here since they are
both extensive and sophisticated. Significantly, however, we have been unable to
discover in his writings any overt instance in which he identified the types of
diagrams which might apply to the logic of relatives and its associative algebra.
This omission is surprising considering that both diagrams and algebras occupied
a large part of his time.

The omission is also surprising since there is, indeed, a set of diagrams which
does correspond to the algebra of the logic of relations. These diagrams are the
beta existential graphs (see, Peirce, 1933, paragraph 468), in particular, the triadic
subset of these graphs.

A general triadic graph is just a central vertex from which three lines radiate.
It simply says that three things are related by some fact. An example of a triadic
relation would be, “Susan sold her car to Ike.” A triadic relation is logically distinct
from a dyadic relation such as “George is greater than Sam.” Peirce proposed a
reduction principle which states that triads cannot be composed of dyads. This was
recently proved by Burch (1991) using rigorous modern logic.
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Fig. 1. Basic triadic graph.

Beta graphs are bonded together by joining one line to another in pairs only.
Thus a network of any extent can be formed which is composed only of triads.

A triadic graph, then, of the algebraic expressionAu= v or, verbally, “A
operating onu givesv” would be that of Fig. 1. Here,u represents an initial state
of a single particle,A is an operator representing an interaction with an external
particle or field, andv is the final state of the particle. Theu andv lines might
refer to the wave functions of single particle states,|u〉 and|v〉, the A line to an
operator|v〉〈u|. The wave functions are assumed to be normalized. This implies
integration over appropriate spaces according to common practice.

Two operations in succession would give C= BA as shown in Fig. 2. This
figure shows a Peirce joining of the lines representing the intermediatev state. Two
triads are thus bonded into a single tetrad graph. A further joining of the interaction
lines A and B to represent a single effective interaction C produces a new triad.

This could be the history of the states of a particle as produced by successive
interactions.

The interaction of two particles could be depicted as in Fig. 3.
The interactionA changes the state of one particle fromu1 to u2 and the other

from v1 to v2. The operatorA could be composed of states either of theu particle
or of thev particle. The joining here is of lines representing interactions.

Figure 3 looks somewhat like a Feynman diagram. It actually represents a
sum over all orders of Feynman diagram. It is more of the nature of anS-matrix
diagram in a Born approximation. We will take it to be a schematic of a two-
particle interaction, but with specific algebraic implications. That is, given the
Peirce/Clifford functionsu, v, andA the actual matrix wave functionsu2 = Au1

andv2 = Av1 can be computed as multiplication of Clifford algebra matrices. An
explicit justification of this will be given in future work.

Diagrams representing any number of interconnected particle interactions can
be formed using the state joining of Fig. 2 and the interaction joining of Fig. 3. One
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Fig. 2. Graphical representation of operator multiplication (C= BA).

Fig. 3. Graph of particle interaction.
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could imagine a network of triads continuously joining in space and time forming
a web which could encompass the universe. A similar idea was once proposed by
J. A. Wheeler (Wheeler, 1983).

One could also envision such diagrams as a way of planning the successive
interactions of elementary particles for various experiments. For example, it might
be possible to simulate basic computer functions such as logic gates using the
interconnection of several interactions such as Fig. 3.

Very recently, Mermin (2001) has proposed a graphical scheme which is
somewhat similar to ours. His is based on a certain type of logical gate (controlled-
NOT), whereas our diagrams include general particle interactions as Clifford
products.

6. DISCUSSION

We have been able to make a plausible sketch of a path from Peirce and
Clifford in the 1870s to the quantum mechanics of the 1920s. Of course, it is a
road not taken. They were 50 years ahead of their time. One can only speculate what
might have happened if Peirce’s life had been less chaotic and Clifford’s life longer.

The ideas developed here, however, including the use of Clifford matrix wave
functions, Peirce’s relatives as quantum operators, the generalized commutators,
and the triadic diagrams, might provide some useful insights even at this late date.
In particular, work is progressing on a relativistic theory using Dirac matrix wave
functions.
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