APPENDIX No. 15.

ON THE USE OF THE NODDY FOR MEASURING THE AMPLITUDE OF SWAYING IN A PENDULUM
SUPPORT.

By C. 8, PEIRCE, Assistant,

The ¢ Noddy?” is an instrument invented by Thomas Hardy, a well-known English cleckmaker
of the early part of this century. It was employed by him and others to detect any oscillatory
swayving of a pendulum support, but I use it to measure the amplitude of such swaying. It con-
sists of a little pendulum supported, like an ordinary clock pendmlum, from a reed or spring; but
instead of hanging down it stands erect, so that gravity acts against the spring and ecanses the
pendulum, although quite short, to oscillate with the same natural period as the gravity penduinm,
which haugs from and sways the support. The instrument that was constructed after my design
by the late M. Breguet is firmly attached to a brass bed-plate, resting on three screw-feet. The
reed is 1 centimeter in length, and from it springs the staff of the noddy, consisting of a steel wire
1 millimeter in diameter and about 9 centimeters long. Trom the lower part of the staff, just above
the attachment of the reed, two short wires extend at right angles to the axis of the staff and in
the plane of the oscillation; they have screw-threads cut upon them, and carry short brass eylin-
ders through the axes of which they pass, and which make the priucipal weight of the noddy. They
can be screwed along the wires so as to adjust the equilibrimm and alter the radius of gyration
about an axis through the center of mass. Another weight, spherical in form, slides upon the staft
of the neddy, and serves to adjustithe height of the center of mass. There are several sets of
cylindrical weights and several sliding weights. At the top of the staff is fixed a small oblong
frame carrying a glass scale of tenths of millimeters, the lines being vertical and the seale running
in the direction of the oscillatory motion. The scale is 10 centimeters from the attachwment of the
staff to the reed. A pillar attached to the bed-plate, with its axis in the vertieal plane of the
reed, carries a horizontal mieroscope directed toward the scale on the noddy, which is illuminated
from an adjustable reflector behind. The microscope is focused with a ratchet; it is furnished
with a draw-tube, and carries in the focus of the eye-piece a horizontal scale or glass, each
division of which is equivalent to about 6,03 in the focus of the objective as ordinarily used,
The noddy is protected from currents of air by being inclosed in a tight metallic cylinder, furnished
with two plate-glass windows opposite to one another at the level of the micrometer scale.
This cylinder carries the reflector. It is also furnished with a stop-cock, so that the air can be
exhausted if desired. The npper ends of the screws of the screw-feet are pointed like the lower
ends, so as to serve as feet; and there is a wooden stand with rests for these feet, apon which the
whole apparatus can be placed upside down to permit the observation of the period of vscillation
of the pendent noddy. . :

‘We may first consider the case of the free oscillation of the noddy, and for the present we may
negleet all resistance to its motion. Let us assume a system of rectangular co-ordinates having
its origin at the root or fixed attachment of the reed, the axis of y being directed vertically upwards
and that of x being in the plane of oscillation. The axis of 2 is then parallel to the axis of rotation,

but the motion will b assuthed to be in the plane of xy. TLet s be the distance of any particle of
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the reed from the root; #, the inclination of the reed to the vertical at the distance s from the root;
#, the whole length of the reed; 6,, the value of # when s=8; 6,, the value of # when $=0, 8o that
fly==0; bk, the distance of the center of mass of the noddy from the attachment of the reed; zand y,
the co-ordinates of this center of mass; y, the radius of gyration of the noddy about an axis parallel
to that of 2z and passing through the center of mass; ¢, the elasticity of the reed at any point, and
we suppose this to be constant throughout the length of the reed; ¢, the acceleration of gravity ;
M, the mass of the noddy (that of the reed being neglected) ; E, the kinetic energy; 1, the kinetic
potency or positional energy. Then

o= f “sin #. ds+hsin b, . y= f “cos #. ds+h cos 6,
o 0
D,.lrzfscos 0.D,ds+hcos b,.D,6,
1] .

Du-y:_fsin #.D,.d—hsin 6,.D, 6,
0
Let ¢/ be a quantity which is the same function of a variable s’ that #is of s. Then we have

) s 2 " s 3
-ﬁ'—_—%f {ds’ﬁcos(ﬂ—ﬁ’).D,H.D,H’.ds } +h D,ﬁ,.j; cos (6—46,).D, 8. ds+F(R2+r*)(D,8)

Yy E p e
M:Mjo (D,A)? (Is+gjo cos # . ds4gh eos 6,

In the first approximation we neglect the fourth power of # in comparison with the second,
and with this simplification we proceed to form the Lagrangian equations, according to the formula
sE or
D spitsa="

The partial differential coefficients are to be taken on the hypothesis of a change in the value
of # corresponding to a single value of s, all other values remaining unchanged, so that
o/F¥.ds_, OF#
" 6D,# T 6D
The partial differential coefficient of the first term of% is

yas' [7D,4. ds+§dsst,H’.ds’;dsngtH .ds
0 0 0

This does not, however, apply to 6=6,; in that case the whole effect is given by the second

and third terms of 1}& The partial differential coefficient of the first term of é is most clearly

deduced as follows: Let s,_,, ¢, 8., be the distances of successive particles of the reed from the
rood, and let #,_,, #, 6., be the corresponding values of /. We have

8 —8=8—8,_,=ds

Let us write
&
dw ="

Then that part of the first term of %;[ which involves 6, is

égi (H(+1“ H-‘)"’*’é g”[ (Hi— ﬁ(—-l)’
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and the differential coefficient of this, relatively to #, is

ar (= 26,—6,_ )= — D2 6. ds

Bat when s=8, the first term of the binomial expressing the part of Il\l to be considered is to be
strack off, becanse there is no particle of the reed further from the root; consequently the differ-
ential coefficient then becomes

7l £
o (=6, )=4 D..b

‘We now see that the simplified Lagrangians are

fosﬂ LAs+h D2 h— 5 Dro—g H=0
0 M

kD2 f o . ds+(R24y?) D2 ﬁ,+1% D, f,—gh #,=0
i

Differentiating the first of these equations relatively to s, we have

&

M I),3 H—g D‘ =0

If we write ¢ for v ME—!»], which has the dimension of a line, the solution to the last equation is

... 8 $
H=(")1 Sm (‘7+ @z CO8 E+ @3

where ©;, 0,, &, are arbitrary functions of the time, independent of 5, Since #,=0,0=0,4 6;; so
that

' N s
H= fe, — & S — —
6, 8in 6+ 6, (co% p 1)

It thus appears that the fizure of the reed is a curve of sines, or a part of such a curve, the wave-

. a
length being 9
We now form from the last equation expressions for #, and forf(,'q # . ds, as well as for those
terms of the two Lagrangians which invoelve # and its derivatives; and from this we eliminate ©,;
and Gy, 80 a8 to make the Lagrangians linear equations in ¢, and f #. ds. And here it will be
convenient to introduce the abbreviations
S

S .S ) .
P=0 CO8 5_-—h sin p q=h cos E+D’ sin —

=ﬁ f.ds S—4, e
o

alm

The expression just found for & then gives us

— S+ 6, sin — 6, (1—cos 4)=0 — X+ © (1—C08 i) — @), (¢ —8in ¢)=0
y S .8
;i D2ty 6=-0,9 th D, #,=6), i o CO8 E—'@’ ’% o 8in

3

- S
—g B,=—6), ‘;’:hsm &+8, i (h—Ph cos &)
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Elimiuating @, and &, first from the first three of these equations, and afterward from the first two
and the sum of the last two, we have

&

M D2 H+g 4, G v
’ < ysin e, (T—~cos o) =0
X , (L—ecos ¢), - —sin o

€ g, g
=y DAt o= 9
& , 8in o s (L—cos o
. X y (1—cos ¢), f—sin

) =0

We have ouly to replace the first element of each of these determinants by its value as given
by one of the Lagrangians, namely

£ Y e , & ) 7/2>
Hy gH=hD* & ty — = Lo )D2s 2
M DeF+ygt=Dz2 >+ oDy mp P-b+ab, (’HE 5 JDES+oD y
to obtain the Lagraugians freed from indeterminate valuesof s and #. The two Lagrangians may
now he embraced in a single expression by the introduetion of an indeterminate number, n. Namely,
we multiply the first by {1—nh) and the second by =k, and add, when we get

(h+npD2S4+a0D 2y, —  ngp, g—ngq
S ) siny,  1—cosy i =0
, 1—cosi,  f—sin |

1

]

s

The abscissa, x,, of a particle on the statf of the noddy, at a distance + above the center of

mass is
r,=0x+(h+r)S

- Let p be the value of » for a particle so situated that it has a single harmonic motion. Then
2% being the abscissa,

Dep= __;I,:, xp

where T is the period of oscillation. We may give n such a value that the equation combining the
Lagrangians becomes identically equal to this, that is, to

-

2 -

R ., & )
(h+p) DS+ /JD,’,{/—}—T, (h+p) S+T—2 oy=0

This gives

p=n}/’
1-—cos ¢, z/l-—fsitn Y ' X y .
7 gl = 1ong | 1—cositn(h—q+-pi)
I FR=07 " Sy, T cosy | = Fsing—3 (I—cos ).

1—cos o, f—sin

—np, 1—nq
T g | Sy 1—cosy | n(o—p)—sing
=0=9 sin o, 1 —cos¢ | — 7 ¢'sin p—2 (1—cos y)
1—cos 1, ¢ —8in

I have carefully performed the elimination of p and = from these equations, and have thus
obtained the quadratic

IS ». n*
FT y-o‘[. (1—cos )~ sin zp] -ﬁ-(h’+;r’+ 6°) 8in ¥ — opip+-p=0



UNITED STATES COAST AND GEODETIC SURVEY. 479

The proper adjustment of the noddy requires p to be a very short length. The coefficient
_ of the first term ought also to be small. Then the solution of the quadratie is

ge (K y*+0?) sin 4 — O‘P’/ 2 ver §in “sin g
=1 \/ y*op (2 ver sin j—i sin )
g1 %)% (2 ver sin o —1 sin v/ A 1F/1-4 {47+ %) sin f—opyi? )

and the approximate values of the roots are

62 (B2+4-p°+6%) sin v—opd W44 0'+Sh—80 cot of

9T~ %6 (2versin f—4 sin )" 37 (20 tan 3 p—8)
o
§? » W cot p—

WT‘) h2 2 — 2 2 2
9T~ (Wt y*+ 6% sin p—app™ h+}}/b+6 +S— s_ cot:;
The latter root represents the principal component of the oscillation. The corresponding
values of p are
et sin o M f‘S oot r=1) oot sin y—tap an g
c—p - 1+ tan 3 ¢ =y’ (4 y* + ¢*+8Sh—36 cot 1) (6—1»)

For any fixed value of ¢, the first component oscillation will be infinitely rapid when

20 tan 4 y—8=0
that is, when

3 «

tan =
26 2o

and the second component oscillation will have a period of infinite length when

o
o col v —T=0
i

that is, when

; S 6

an ==

e h

This affords a means of determining ¢, by measuring & when the adjustment is such as to give this

condition of things.
The amplitudes of the two component oscillations depend upon the manner in which the noddy

is set into wmotion, but the second will usnally be the principal one and the first will be insensible;
the noddy will consequently rotate about a fixed point determined by the value of py.
‘When the noddy is in the pendent position the vertical co-ordinates may be taken to increase

downwards, Then, those terms of e which involve g will have their signs reversed. The equa-
tion to determine the figure of the reed will aceordingly be

3¢ D3 6—g D, 6=0

The solution of this contains gudermannian instead of trigonometric functions, and may be
written
6=, sinh > +6, cosh - +6;

and since as before
b,=0=6,+6, )
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this takes the form

p=—0, sink 40, <coah o )
This gives us

S$+4+6, sinh -6, (cosh (/;—1,):0

X+ 6 <cosh r/~—1>__(;)2 (sinh r/;—:/;) =0

+1f1 D:b—g i—g ©,=0

9q—
—ypa Dm0 6.0 246, (+4 0~ 9 )=0
where

p'=h sinh 4+ 6 cosh
¢'=h cosh i+ ¢ sinh
Thus the Lagrangians become

h D2 S+ eDiy, 0 g
, 8inh 4+ , cosh p— 1| =0
X , cosh y—1, sinh p—1b

(h+l2> DistoDiy, — Py —Jd+g
h t tAY h 2 h
S

, 8inh 3, cosh y— =0
X , cosh p—1, sinh p—f |
and their combination is
(h+ny?) DfS+ D¢y, —"yp y y—ngq’
,sinh o ,cosh—1 | =0
x , cosh —1, sinh §—3p
The equations to determine p and T are
p=ny*
cosh :/ —1, sinh —1p
7’ . —n 1—ng wsh —14n (—h+q—p'
o (b myt) = P, 1-ng 4 (—htg —p')

sinh >, cosh ¢p—1 =9 2 (cosh ¢-—1)—¢ sinh ¢
cosh 4 —1, sinh 1/:—1/;

._.np/
L I sinh ¢ ,cosh z/ -1 I —sinh 40 (p/ ——6)
T¢ =9 Tsinh ¢ ,cosh$—1 =93 (cosh ¢ —1)—¢ sinh ¢
cosh —1, sinh o —¢

The elimination of » gives

gj,z{‘ y*612 (cosh y-—1) —y sinh ¢} —-%;(h‘-‘+y’—6“) sinh ¢ — op'¢ +2ho (cosh ¢ —1){+p'=0

and the approximate values of the roots are

i (h‘+yﬁ—a’) sinh ¢ —op’y:+2ho (cosh ¢—1)
gT? y*o {2 (cosh ¢—1)—4 sinh ¢]

71, pl

1+icoth "
3= (h3 5% I -
917~ (3P =0%) sinh ¢~ap’p+2ho (cosh ¢— I) MEys —S—sxeoth ¢+2d tanh § %

-
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‘When the noddy stands on the support of a gravity pendulum oscillating in the same plane,
we may neglect the influence of the former upon the latter. Then if & be the horizontal displace-
ment of the support, we have

thzfscos .D 6. ds+heosS. D S4D, &
0

Consequentlyf{ is increased by the terms
D,Z,—'fseos 8.D,0 . ds+hcos S . D, S. D E44(D, &P
0
The first Lagrangian heretofore considered will be increased by 12 &, and the secoud by & D &

The figure of the reed will not be affected, and the combination of the Lagrangians will simply have
D? £ added to it. We will now write

where = is the constant amplitude of oscillation of the support and T’ is the period of the gravity
pendulum. Thus, the differential equation for x, becomes

5 cos ! =0

2
D2 [(h+p) 3+0 x 1+ [(h+p)2 TOX = = COS

This will add to the motion of x, a harmonie component, having the period T/, so that it will be

-,
(h+p) S+ 0 y=Xcos ——Tf’n—QcosTt, T

To determine € we take the second derivative:
7’ i~t 2 t
DX+ p)S+oy]= —ip X ¢os - TP w4 ,17,7,2 Q cos ™7
b2 AT t
e I(’L+ )34 ox +Tr2; Cos T

2 1 ¢ t
—-,?Iraz X cos Tg T+ 7{2(,[{—}-,11,2) COS 1, 7

Thus we have

Q_Q, &
Tr=met e
or .
™
Q'—'—“Ta:jf‘/-z ~ .
But the noddy has no oscillation to begin with. This fact is represented by the equations
te=0 X=Q
Hence

t t 217 T —T T4+ T
(h4+p) 9+ 06x= T’ T'2 COS M@ — COSmy @ ) = E g e sin ST - {7 sin - ST ~tx

This equation shows that the noddy would oscillate with a period, & sort of mean between its
natural period and that of the gravity pendulum. The amplitude of oscillation would increase
from nothing at an initial rate not much affected by the value of (T — T') until it would reach its
maximum, when |

1
=g
H, Ex. 43——61
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At the beginning the noddy would be a quarter of a phase behind the gravity pendulum ; at the
maximum oscillation of the noddy it would be in opposition to the pendulum; and when it was
reduced to rest again it would be a quadrant in advance. It would then start up as before.

In considering the influence of the gravity pendulum upon the noddy, however, it is essential
to take account of the resistance to the motion of the latter, owing to the internal friction of the
spring and to the viscosity of the air. The dissipation produced by the former cause will be

S
10/ (D, 6y s
0

where 1 is a constant. This will add the term
M
Do

tothe first Lagrangian. It will slightly change the figure of the spring, and the equation to deter-
mine this will be a partial differential equation, showing that the wave-length will not be constant.
But this effect will be very small and may be neglected. Neglecting also the effect of the resist-
ance upon the period of the motion, we find that if the natural motion of the noddy is

j-]5'1: t
h+p)S+oyxy=0¢e ™ cos 1 7

then its motion under the influence of the pendulom is

¢
g S, B

= , L2 t . t
(h+p) S+ OﬂX:AR’{ sinw .e  cos T+ sm(;l—f, T — m) }

where

12

tan w:% R=vA*4-B* A=1— ’,ll“z

It will be seen that the natural period and rate of decrement of the arc of the noddy have to
be observed, and that weighings and measures of its parts have to be made so0 as to calculate
m—pe  Then, it is necessary to observe, while the gravity pendulum is swinging, the relative am-
plitude and phase of the motion of the noddy. R

I have made considerable use of the instrument, and find it gives results agreeing within a few
per cent., and that it is on the whole a tolerably satisfactory way of determining the amount of
swaying of a pendulum support.



