
 

APPENDIX No. 15. 

ON THE USE OF THE NODDY FOR M};ASPRING THE AMPLITCDE OF RWA YING IX A PEXDn.rM 
SUPPORT. 

The" Noddy" is au instrument invented by Thomas Hanly, a well-known English clockmaker 
of the early part of this century. It was employed hy him aml ot!Jers to detect a11y oscillatory 
swaying of a pendulum support, but I use it to measure th\' amplitude of sucl1 swaying. It co11-
sists of a little pendulum supported, like an ordinary cloek pendnlnm, from a reed or spring; hut 
inRtead of hanging down it stands erect, Ro that gravit,v act.fl against the spring and canRes the 
pendulum, although quite short, to oscillate with the same natural period ai:; the gra,-ity pendulum, 
wl1ich hangs from and swa,vs the support. The instmmm1t. that was constructed after my deRign 
by the late l\:[. Breg·uet is firmly attached to a brass lwd-plate, resting on three .screw-feet.. 'l'l1P 

reed is 1 centimeter in Jeng·th, and from it 8priugs the staff of the noddy, consisting of a steel wire 
1 millimeter in lliameter autl abont !) centimeters long;. From t.lie lower part of the staff, just auove 
the attaelunent of the. reed, two short wires extend at right angles to the iixis of the staff aud in 
the plane of the oscillation; they lrnYe screw-t,hreads cut upon them, and citrry short brass <·.;din
ders through the axes of which tl1f•y pass, and which make the priucipa.l weight of tbe noddy. They 
can be scre\ved along the wires so as to adjust the equilibrium and alter the radius of gyration 
about an axis through the center of mass. Another weight, spherieal iu form, slides upon the staff 
of the noddy, and senes to adjust"the height of the center of mass. There are several setR of 
cylindrical weights and several sliding weights. At the top of tbe staff is fixed a small oblong 
frame carr.yiug a glass scale of hmths of millimete1·s, the lines being vertical and the scale running 
in the direction of the oscillatory motion. The scale is 10 centimeters from the attachment of the, 
staff to the reed. A pillar attached to the bed-plate, with its axis in the Yertical plane of the 
reed, carries a horizonta.I microscope. directed toward the scale. on the noddy, which is illuminated 
from an adjustable reflector behind. The microscope is focnsed with a ratchet; it is furnished 
with a draw-tube, and carries in tl1e focus of the eye-piece a horizontal scale or glass, t'Hch 
division of which is equivalent to about O"'m.03 in the focns of the objective as ordinarily used. 
The noddy is protected from currents of air by beiug iuclosed in a tight metallic cylinder, furnished 
with two plate-glass windows opposite to oue another at the level of the micrometer scale. 
This cylinder carries the reflector. It h; also furnished with a stop·cock, so that the air can he 
exhausted if desired. The upper ends of the screws of the screw-feet are point.NI like the lower 
ends, so as to serve as feet; and there is a wooden stand with rests for these feet, upon which the 
whole apparatus can be place(l upside down to permit the ohserqit.ion of tlw period of oscillation 
of the pendent noddy. 

We may first consider the case of the free oscillation of the noddy, and for the 1weRent we may 
neglect all resistance to its motion. Let us assume a system of rectangular co-ordinates having 
its origin at the root or fixed attachment of tlie reed, the axis of y being directed Yertically upwards 
and that of x being in the plane of oscillation. The axis of z is then para.He! to the axis of rotatiou, 
but tbe motion will ~ assumed to be in the plane of xy. Iiet a be tbe distance of any particle of 
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the reed from the root; H, the inclination of the reed to the vertical at the distances from the root; 
II, the whole length of the reed; e., the value of fl when s=S; 80 , the value of fl when s=O, so that 
Ho=O; h, the distance of the center of mass of the noddy from the attachment of the reed; x and y, 
the co-ordinates of this center of mass; I'• the radius of gyration of the noddy about an axis parallel 
to that of z and passing through the center of mass; <, the elasticity of the reed at any point, and 
we suppose this to be constant throughout the length of the reed; g, the acceleration of gravity; 
M, tl!e mass of the noddy (that of the reed heing neglected); E, the kinetic energy; r, the kinetic 
potency or positional energy. Then 

;t'= J:
5

sin fl . ds+h sin fJ, Y= .foscos H. ds+h cos fi, 

D,J'= f'cos (}. D, ds+h co:; fl,. D, fl, 
Jo . . 

D,;lJ= - J:'sin fJ. D,. dtB-h sin fl,. D, fl. 

Let fJ' be a qnantit,v which is the same fuuction of a variable s' that 8 is of s. Then we have 

E f' f f' . l fs a J\l =~ I ds' J 
0 

cos (f!-11'). D,H. D,01
• ds j +It D,e,. Jo cos (f!-H,). D,O. ds+~(lt2+r2)lD,H,) 

T E1· 1·• M=M 
0 

(D.H) 2 ds+g 
0 

cos H. ds+gh cos IJ, 

In the first approximatio11. we neglect the fourth power of fJ in comparison with the second, 
and with this ~implification we proceed to form the Lagrangian equations, according to the formula 

oE OT 
D, 0In1+ <M=O 

t 

The partial differential coefficients are to be taken on the hypothesis of a change in the value 

of H corresponding to a single Yalue of s, all other values remaining unchanged, so that 

o_(FIJ. ds -d 6'F H 
6'D,H - 8

• oD,H 

The partial difierential coefficient of tlie first term of~ is 

~ ds'}~
5

D, H. ds+~ ds.fo'DJI'. d11'=ds.fo'n,o. ds 

This tloes not, however, apply to O=O,; in that case the wl1ole effect iR given by the second 

and third terms of ~· The partial differential coefficient of the first term of ~ is most clearly 

deduced as follows: Let s,_., s,, s,+, be the distllnces of successive particles of the reed from the 
roo•, and let H,_,, H,, H,+, be the corresponding vah1es of 0. We have 

Let UR write 
I: 

as='' 
Then that part of the first Ulrm of~ which involves o, is 
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and the differential coefficient of this, relatively to H; is 

~ E M (-H;+1+2 H;-H,_,)=-MD,2 fl. ds 

But when s=S, the first term of the binomial expressing the part of [i to he <·onsitlered is to he 

struck otl', because there is no particle of the reed further from tl1e root; consequeutl_y ttie tlitter
ential coefficient then become8 

1/ E 
M (H.-fl.-i)=M D .. f! 

\Ve now see that the simplified Lagrangians are 

Difforeutiating the first of these equations relatively to s, we have 

If we write u for ..;ME , which has the dimension of a line. the solution to the last equation is g . 

where 611, @3, 613, are· arbitrary functions of the time, independent of s. Since H0=0, O=flz+ Eil3 ; so 
that 

It thus appears that the figure of the reed is a curve of sine8, or a part of such a curve, the wave

length being 2:_. 

We now form from the la8t equa,tion expressions for H, and forf," fl. ds, as well as for those 
terms of the two Lagrangians wbicb inYolve fl and its derh·atives; aw.l from this we eliminate 8 1 

and 6121 so as to make the La.grangians linear equations in fl, and J,.s fi. d.~. And l1ere it will he 
convenient to introduce the abbreviations 

fos IJ • ds 
x=-----o 

s 
ef.·=-

0 

s l • s P=IJ' cos - -ti SID -
(j (j 

h 
s . s 

q= COS -+o- SID -
(J <1 

Tbe expression just found for fJ then gives us 

E · g S g .8 
·· -··- D H =fJ1 - <i cos --8. - IJ' SID -
Mk • ' h ('J • h o-

-g 0,=-81 ~ ksin ~+e, i (k-h cos~) 
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Elimiuat.ing ~J 1 awl r..;1 first from the firi:;t thrf'e of these eqnations, an<l afterward from the first two 
and the sn111 of tl1e last two, we han•. 

f 
M J)/ H+[t H. 0 , g 

"' , sin 1f' , (1-cos 1/) =0 
X , (1-cos 1/"), 1(-siu '/' 

J,tfl D, H,+f! H,,-fp 'g-z lj 
.::. , sin 1f' , (l-cos if') 
x , (1-em; 1·), 1f'-si11 1(' 

\Ye hnve 011ly to replacf' the tin;t elMnent of each of tl.tese determinants hy itA valne a8 giwu 
lly Ollf' of tl1t• Lagra11giaus, 11aml·ly 

t<:) o11tai11 the LagTa11gim1s freP!l fro111 i1Hfot1•r111i11ate values of sand fJ. 'l'he two Lagrangians may 
now lw emliraei'll iu a siugle expresl'ion h;r the introduction of au indeterminate number, n. Namely, 
we m11ltipl~· the tirst by (1-nh) aml tl1e second hy nh, and a<l<l, when we get 

I 
(11+nr")I>/ 5-+aD,'x, 

-5' ' 
x ' 

- ngp, 
sin 1f', 

I-cos 1/', 

g-ngq I 
l-C081(' I =0 
1f--sin 1/ I 

The ahsch;;sa, x,, of a particle on the statl' of the noddy, at a distai!ce r ahoYe tl1e center of 
mass is 

Let p be the value of r for a 1iarticle so situated that it has a single harmonic motion. Then 
,,.< hei11g the abscissa, 

where T i8 the period of o:-<eillatiou. \Ve ma.r givt• 11 such a value that the equation combining the 
I~:tg-rm1gi:rns bernrnws ideutic~nlly e!]ual to this, tliat hi, to 

This g-iyes 

o• o• 
(lt+p) J>/.3+ pD/,r+'l'' (ll+p) ~+T' ax=O 

P=ny' 

I 1 -cos¢·, 1(-sin tf: I 
71' - np, l-1UJ r I-costf+n(h-q+ptf:) 
'l"(li+p)=fi-1 - ·sill 11·,-i-c?s1rl =g if sill¢.:.::.-2cr~-cos 1n · 

1-cos 11~, rf·-sm 1/• 

I -np, 1-nq l 
silll/', I-cos¢· n(<r-p)-sin¢1 

I sin tJ.·, 1:..::cos!f I =YfsiD.¢-.::..2(1-=costf·) 
1 -cos t/J, 1/·-sin tf· 

7T'J. 

'l" Ci=g 

I have carefully 11twfomwtl the elimination of p and n from these equations, and ha-ve thus 
obtained the quadratic 
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The proper ar~justrnent of the noddy requires p to be a very short length. The eoeltkieut 
of the firl'lt term ought also to be small. Then the Rolutiou of the quadratic is 

0
2 =~ (h

2+r2t-(}"2
) 1!_i11J-'.1Pt/' r l± / y 2<Jp-(2 ,~ersI1ilf·--{sii\;;T) 

gT1 ~y20 (2 ver sm 1/·-f sm t/·)\ -v 1- 4 l(1i2+r2+ir2) sin 1(::.:.op{l2, 

and the approximate values of the roots are 

_02 
_ (h2+r2+<J2

) sin "'-opif· _h2+r2+02+Sh-80 cot 1/· 

r/N-7/2 0 (2ver-siil 1/-=tr si1l-lf·>- y 2 (20 tan 2 1f·-S) 

The latter root represents the principal component of the oscillation. The correspoudi11g 
values of p are 

cr2 (<J ) . k -S - cot 1.·-l _ (h2+o2 ) sm 1f'-op1/· + h h 1 
Pi------·--·----·· - - -- -- ---=-- ----- ---- -- -- -· - - _ 2 (11

2+r2+a2
) siu 1·-".!.op tan 1 !/· 

fJ.i-Y (h2+.)12+02 -ts1i~So cot 1/·) (o-p) 6-p . <5 
~+ h tan~ 1/' 

For any fixed Yalue of C:·, the first component oscillation will be infinitel;y rapid wlien 

that is, when 

and the second component oscillation wrn have a period of infinite length when 

that is, wheu 

(j' 

It cot, •.'·-1=0 

t--\ 6 
tan =, () t 

This affords a means of determining t11 by measnrillg h when the adjustment is such as to giYe this 
condition of things. 

The amplitudes of the two componmit oscillations depelHl upon the manner iu which tl1e noddy 
is set into motion, but the second will us.uall.Y be the principal one and the first will be iuseusible; 
the nodtly will consequently rotate about a fixed point determined by the \'alue of p1• 

When the noddy is in the pendent 1>osition the vertical co·ordinates may be taken to increase 

downwards. Then, those terms of {; which involve g will have their signs reversed. The equa

tion to determine the figure of the reed will accordingly be 

e 
- D 3 8-g D 8=0 M • • 

The solution of this contains gudermannia.n instead of trigonometric functions, and may be 
written 

8=-8 sinh s_+e cosh !_+e3 
I (1 • () 

and since as before 
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this takes the forrn 

This gives us 

where 
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.9+(-:,11 siuh 1/,-E>,(coshtf·-l)=o 

x+ r..;, ( cosh rf'-1 )-8, ( siuh 1f'-1f)=o 

+ _M: n; fl- 9 R-u 82=0 

-_M11 D,t1.-gt1,-eJ{iP'+e. ( +iq'-u)=o 

p'=h sinh rf'+ o cosb ¢' 
q'=h cosh 1/+ <I sinh 1/· 

Thus the Lagrangians become 

.S , sinh ¢' , cosh ¢- 1 =0 l 
h D~ .s+aD',x, o ,+g I 

x , cosh if:-1, sinh ifJ-1/J 

(h+~) D~.9+0-D~x. - ~ p', -1 qi+ g] =o 
9- sinh ¢· , cosh ¢· - 1 
x cosb 1f;-l, sinb tf·-1(' I 

and their combination is 

I 
(h+ny2

) Dt2.9+0Dt2X, -:ngp' , g-_ngq' I 
,S , smh 1/· , cosh if:-1 =0 
x , cosh 1/·-l, sinh 1/•-1/· 

The equations to determine p and T are 
µ=ny2, 

I cosb 1/·-l, sinb rf·-¢ I 
n~ ., -np' , 1-nq' cosh tf•-l+n (-h+q'-p'if.•) 
T2 (h+ny-) =u I smh !/J 'cosh ¢-l 1 =u-i:qcoshiJ:-l)=lfsirih_¢_ 

cosh i/'-1, sinh if·-1/) 

1

-np' , 1-nq' I 
n' sinh ¢ , cosh i/)-1 -sinh 1p+n (p'-o-) 
1'2 o=g sinh ¢ , cosli-¢=1-\ =U2(cosh ¢-1)-=-ifsiiih tf• 

cosh ¢•-1, sinh 1/·-tf· 

The elimiuatiou of n gives 

;;, y2<Y!~ (cosb 1f"-l) -1/· siuh 1f'! -Jf,Hh'+ r 2-<Y2) siuh t{·-irp'¢+2hcr (cosh ¢-1)! +P'=O 

and the approximate values of the rootR 11.re 

11:
2 _(h2+r2-<Y2

) !:liuh 1J:-<fJJ'¢+2A11 (oosh ¢·-1) 
uT12 - - - ·· y20-[:f(oos:ili/;=1)-4 sinh ¢)--

1+}coth ¢ 
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When the noddy stands on the support of a gravity pendulum oscillating in the same plane, 
we may neglect the iafiuence of the former upon the latter. Then if E. be the horizontal displace
ment of the support, we have 

D,x= .£5

cos fi. D fi. cis+hcm; ~. U -9+D,~ 

Consequently~ is increased by the terms 

D,e f
0

5

em1 B. D, fJ. <l8+h cos -9. U, S. D ~+~ (D, E)2 

The first Lagrangian heretofore considered will be increased hy D; !;, awl the second by h n; E.. 
The figure of the reed will not be affected, and the corn bin a tiou of the Lagraugiaus will simply have 
D; ;; added to it. We will now write 

where 3 is the constant amplitude of oscillation of the support allll T' h; the period of the gra\'itr 
pendulum. Thus, the difierential equation for xP becomes 

2 2 t 
D,Z [(h+p) s-+o xJ+T2 [(h+p)S +<rx]-,f,2 E cosT17T=0 

This will add to the motion of x Pa harmonic component, ha Ying tlie period T', so that it will be 

, • t-to t 
(h+p) .S+ox=Xcos-T 7T-QcosT, 7T 

To determine Q we take the second derh·a.tiYe: 

7lz nZ _ t 
=-r_rz[(h+i;)-9+ ux+Tti,.:;CORT' 

Thus we have 

or 

.. 
But the noddy has no oscillation to begin with. This f<wt is represented by the equations 

Hence 

This equation shows that the noddy would oscillate with a period, a sort of mean between its 
natural period and that of the gravity pendulum. The amplitude of oscillation would incrcas(' 
from nothing at an initial rate not much affected by the value of (T - T') m1til it would reach its 
maximum, when , 

H. Ex. 43--61 

TT' 
t=T-T' 
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.A.t the beginning the noddy would be a quarter of a phase behind the gravity pendulum; at the 
maxiruum mmillation of the noddy it woul<l be in opposition to the pendulum; and when it was 
re'luced to re~'lt again it would be a quadrant in advance. It would then start up as before. 

In considering the influence of the gravity pendulum upon the noddy, however, it is essential 
to take account of the resistance to the motion of the latter, owing to the internal friction of the 
spring and to the viscosity of the air. The dissipation produced by the former cause will be 

s 
~ µ J (D, 8)2 ils 

0 

where JL is a constant. This will add the term 

~D,B 

to the first Lagrangian. It will slightly change the figure of the spring, and the equation to deter
miue this will be a partial differential equation, showing that the wave-length will not be constant. 
But this effect will be •cry small aud may be neglected. Neglecting also the effect of the resist
ance upon the period of the motion, we find that if the natural motion of the noddy is 

,)l"B" , t 
(h + p) s + ox = (-j e cos T n 

then its motion under the influence of the pendulum is 

where 
A 

tau c..1=B 

It will be seeu that the uatural period and rate of decrement of the arc of the noddy have to 
be obserrnd, and that weighings and measures of its parts have to be made so as to calculate 
p1-p-1• Then, it is necessary to observe, while the gravity pendulum is swinging, tbe relative am
plitmle and phase of the motion of the noddy. 

I have made considerable use of the instrument, and find it gives results agreeing within a few 
per cent., and that it is on the whole a tolerably satisfactory way of determining the amount of 
swa,ying of a pendulum support. 


